A		Job Code:	Giza
	Giza Steel	Job Name:	NASCC 2017
	1801 Park 270 Drive Suite 220 St. Louis, MO 63146 Email: info@gizasteel.com	Sheet No:	1 of 18
GI7A	www.gizasteel.com	Revision No:	Giza 00 Date: 03/14/2017
U.L.A		Subject:	S2W-C1 - B1000

SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB

		Job Code:	Giza	
	Giza Steel	Job Name:	NASCC 20	017
	1801 Park 270 Drive Suite 220 St. Louis, MO 63146	Sheet No:	2 of 18	_
	Email: info@gizasteel.com	Created by:	Giza	
GIZA	www.glzasteel.com	Revision No:	00	Date: 03/14/2017
		Subject:	S2W-C1 ·	- в1000

I. DESIGN DATA AND LOADS (ASD-14th Edition)

COLUMN PROPERTIES:	W14	IX90 - A992	
Depth,	d = 14 in	Web Thickness,	tw = 0.44 in
Flange Width,	bf = 14.5 in	Flange Thickness,	tf = 0.71 in
Distance k,	k = 2 in	Distance k1,	k1 = 1.438 in
Area,	$Ag = 26.5 in^2$	Distance k (Design),	kdes = 1.31 in
Minimum Yield Stress,	Fy = 50 ksi	Minimum Tensile Stress,	Fu = 65 ksi
Modulus of Elasticity,	E = 29000 ksi		
BEAM PROPERTIES:	W16	5X26 - A992	
Depth,	d = 15.7 in	Web Thickness,	tw = 0.25 in
Flange Width,	bf = 5.5 in	Flange Thickness,	tf = 0.345 in
Distance k,	k = 1.063 in	Distance k1,	k1 = 0.75 in
Area,	$Ag = 7.68 in^2$	Distance k(Design),	kdes = 0.747 in
Minimum Yield Stress,	Fy = 50 ksi	Minimum Tensile Stress,	Fu = 65 ksi
Modulus of Elasticity,	E = 29000 ksi		
Top of Steel Elevation,	Elev = 0 ft + 0 in		
Span Length,	L = 30 ft	Erection Clearance,	gap = 0.5 in
Slope,	θ sl = 0 deg	Skew,	θ sk = 0 deg
Depth of Top Cope,	dcT = 0 in	Depth of Bottom Cope,	dcB = 0 in
Length of Top Cope,	cT = 0 in	Length of Bottom Cope,	cB = 0 in
BOLTS PROPERTIES:	3/4	l" ø - A325-N	

For Shear Plate to Beam Web Connection:

Bolt Diameter,	db = 0.75 in		
Bolt Shear Strength,	Arv = 11.928 kips	Bolt Tensile Strength,	Λrn = 19.88 kips
Bolt Type,	Bolt_Type = A325-N	Connection Type,	Conn_type= Bearing Type

				Job Code:	Giza
		Giza Steel		Job Name:	NASCC 2017
	1801 Park 27	'0 Drive Suite 220 St. Lou	iis, MO 63146	Sheet No:	3 of 18
		Email: info@gizasteel.co	om	Created by:	Giza
GIZ	Υ Α Ι	www.gizasteel.com		Revision No:	00 Date: 03/14/2017
				Subject:	S2W-C1 - B1000
	Number of Bolt Rows,	nr = 4	Bolt Verti Spacing,	cal s	= 3 in
	Number of Bolt Column Lines,	nv = 1	Bolt Horiz Spacing,	ontal sv	r = 0 in
	Total Number of Bolts (nr•nv),	nb = 4			
	Holes at Beam Wel	b,	Holes at S	hear Plate	· /
	Vertical Hole Dimension,	hdv = 0.875 in	Vertical H Dimension,	<i>lole</i> ho	dv = 0.875 in
	Horizontal Hole Dimension,	hdh = 0.875 in	Horizontal Dimension,	Hole ho	dh = 1.063 in
	Bolt First Down from Top of Beam,	D = 3 in			
	Vertical Edge Distance (D-dcT),	Lev = 3 in	Vertical E Distance min(Lev,Le	dge Le	ev = 1.25 in
	Horizontal Edge Distance,	Leh = 1.75 in	Horizontal Distance,	Edge Le	eh = 1.25 in
WEL	DS PROPERTIES :				
	Minimum Tensile S	Stress,	Fu = 70 ks	i	
	For Shear Plate to	o Column Web Connection:			
	Preferred Weld Size (w1),			.n	
SAF	ETY AND RESISTANCE	FACTORS :			
	Safety Factor, Ω	(ASD)	Resistance F	actor, φ(L	RFD)
	Modification Fac	tor,			
	$\Lambda = \frac{1}{\Omega} (if ASD)$		$\Lambda = \phi$ (if LR	FD)	
		safety factor	resistance f	actor i	modification factor
	For Member in Bearing/Bolt Bearing(brg),	Ω brg = 2.00	¢brg = 0.75	2	Abrg = 0.50
	For Block Shear()	bs), $\Omega bs = 2.00$	∮ bs = 0.75	2	Abs = 0.50
	For Flexural Loca Buckling/Flexura. Strength(b),	$\begin{array}{l} al \\ \Omega b = 1.67 \\ l \end{array}$	φb = 0.90	1	<i>Nb</i> = 0.60
	For Flexural Rupture(fr),	Ω fr = 2.00	¢fr = 0.75	Z	Afr = 0.50
	<pre>For Member Shear C, WT, L(v),</pre>	for $\Omega v = 1.67$	$\phi v = 0.90$	1	Av = 0.60

1801 Park 2 GIZA	Giza Steel 270 Drive Suite 220 St. Louis, MO 63146 Email: info@gizasteel.com www.gizasteel.com		Job Code: Job Name: Sheet No: Created by: Revision No: Subject:	Giza NASCC 2017 4 of 18 Giza 00 Date: 03/14/2017 S2W-C1 - B1000		
For Shear Rupture(vr),	$\Omega vr = 2.00$	¢vr = 0.75	Ĩ	Avr = 0.50		
For Shear Yielding(vy),	$\Omega vy = 1.50$	<pre>\$\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	ž	Avy = 0.67		
APPLIED LOADS:						
Given End Reaction	n					
Beam:						
Shear Load,	V = 10 kips					

Adjacent Shear $V_2 = 0$ kips Load (if any),

		Job Code:	Giza
	Giza Steel	Job Name:	NASCC 2017
	1801 Park 270 Drive Suite 220 St. Louis, MO 63146	Sheet No:	5 of 18
	Email: info@gizasteel.com	Created by:	Giza
GIZA	www.gizasteei.com	Revision No:	00 Date: 03/14/2017
		Subject:	S2W-C1 - B1000

II. CALCULATIONS

A. BEAM WEB CHECK

```
1. Bolt Capacity
```

```
(AISC 14th Ed. Specifications, Chapter J, Section J3.10, pages 16.1-127 to 16.1-
Bolt Capacity due to Shear Load
   Bearing Area,
       Abrg = db \cdot tw
                                                   Abrg = 0.187 in^{2}
   Bolt Centerline Distance from Face of Support,
       ab = 0.5 \cdot (bf - tw) + gap + Leh + 0.5 (nv - 1) \cdot sv
                   cos(0sk)
       ab = 9.28 in
   Eccentricity Distance of End Reaction from Bolt Line,
       ebv = ab
                                                  ebv = 9.28 in
   Load Inclination from Vertical,
       \theta = 0 \deg
   Eccentric Load Coefficient,
    (AISC 14th Ed. Manual Part 7, Instantaneous Center of Rotation Method, pages 7-
       C = 1.172
   Allowable Bearing Strength Using Edge Distance, (J3-6a, J3-6c)
       hdh < hdls
       Fbe = \Lambdabrg · Fu · 

1.2 \cdot (Lev - 0.5 \cdot hdv) \cdot tw

1.2 \cdot (Leh - 0.5 \cdot hdh) \cdot tw
                                     2.4 ·Abrg
       ebv > Oin
       Fbe = min (Fbe)
                                                   Fbe = 12.797 kips
   Allowable Bearing Strength Using Bolt Spacing (J3-6a, J3-6c)
       hdh < hdls
       Fbs = Abrg Fu min[1.2 (s - hdv) tw , 2.4 Abrg]
       Fbs = 14.625 kips
   Number of Area in Consideration,
       n1 = 1
   Bolt Bearing Capacity,
       ebv > 0in
       Rbrg = C \cdot min(n1 \cdot Fbe, n1\cdotFbs, n \cdot Arv)
```

		Job Code:	Giza
Giza Steel		Job Name:	NASCC 2017
1801 Park 270 Drive Suite 220 St. Louis. M	10 63146	Sheet No:	6 of 18
Email: info@gizasteel.com		Created by:	Giza
GIZA www.gizasteel.com		Revision No:	00 Date: 03/14/2017
GIZA		Subject .	S2W-C1 - R1000
		Subject.	<u>52W CI BIOU0</u>
Rbrg = 13.977	/ = 10 kip	DS	
Bolt Capacity > Applied Force, UCV = 0.715 , 0	K		
2. Shear Capacity			
(AISC 14th Ed. Specifications, Chapter G, Sect 16.1-69)	ion G2.1,	pages 16.1	1-67 to
Clear Distance Between Flanges of Beam Less	s the Fill	et or Corne	er Radii, S
$h = d - 2 \cdot k des $	n = 14.206	i n	Ka ka
Limiting Depth-thickness Ratio,			ב ס tw_→
$htw = \frac{h}{tw}$	ntw = 56.8	324	kdes
Clear Distance Between Transverse Stiffener	cs,		
htw < 260			
a = 0 in a	a = 0 in		
Web Plate Buckling Coefficient, (G2-6)			
htw < 260			
kv = 5	xv = 5		
Web Shear Coefficient, (G2-3, G2-4, G2-5)			
$htw \leq 1.1 \cdot \left(\frac{kv \cdot E}{Fy}\right)^{0.5}$			
Cv = 1	Cv = 1		
Shear Capacity, (G2-1)			
Rv = Avbm ·0.6 ·Fy ·d ·tw ·Cv			
Rv = 70.509 kips	V = 10 kip	S	
Shear Capacity of Section > Applied Force, UC	v = 0.142,	OK	
B. BEAM WEB TO SHEAR PLATE CHECK			
1. Bolt Shear Capacity			
(AISC 14th Ed. Specifications, Chapter J, Sect	ion J3.6,	pages 16.1	1–125)
Shear Capacity Per Bolt,			
Arv = 11.928 kips			
Bolt Shear Capacity,			
$Rb = n \cdot C \cdot \Lambda rv$			
Rb = 13.977 kips	/ = 10 kip)S	
Bolt Shear Capacity > Applied Force, $UCV = 0$.	715, ОК		
2. Check for Spacing			

A		Job Code:	Giza	
	Giza Steel	Job Name:	NASCC 20	017
	1801 Park 270 Drive Suite 220 St. Louis, MO 63146	Sheet No:	7 of 18	
	Email: info@gizasteel.com	Created by:	Giza	
GIZA	www.glzasteel.com	Revision No:	00	Date: 03/14/2017
		Subject:	S2W-C1 -	- B1000

(AISC 14th Ed. Specifications Chapter J, Section J3.3 and J3.5, pages 16.1-122 to 16.1-124) $\,$

```
Shear Plate Thickness,
       t1 = 0.375 in
    Beam Web Thickness,
       t2 = 0.25 in
    Vertical Spacing of Bolts,
        s = 3 in
       smin = 2\frac{2}{3} ·db
                                                        smin = 2 in
        smax = min(12in, 24 \cdot min(t1, t2))
                                                        smax = 6 in
    Spacing > Min. Spacing & Spacing < Max. Spacing, OK</pre>
3. Check for Edge Distance
(AISC 14th Ed. Specifications, Chapter J, Section J3.4 and J3.5, pages 16.1-122
to 16.1-124)
    Shear Plate Thickness,
       t1 = 0.375 in
    Shear Plate Edge Distances,
       Lev1 = 1.25 in
       Leh1 = 1.25 in
    Beam Web Thickness,
       t2 = 0.25 in
    Beam Web Edge Distances,
       Lev2 = NA
       Leh2 = 1.75 in
    Vertical Edge Distance,
                                                            Levcon = \begin{pmatrix} 1.25 \text{ in} \\ NA \end{pmatrix}
       Levcon = \begin{pmatrix} Lev1 \\ Lev2 \end{pmatrix}
                                                            Levmin = \begin{pmatrix} 1 \text{ in } \\ NA \end{pmatrix}
       Levmin = \begin{pmatrix} Levmin1 \\ Levmin2 \end{pmatrix}
       min(Levcon) = Lev1
        Levmax = min(6in, 12 ·t1)
        Levmax = 4.5 in
    Edge Distance ≥ Min. Edge Distance & Edge Distance ≤ Max. Edge Distance, OK
    Horizontal Edge Distance,
```

GIZA GIZA GIZA GIZA GIZA GIZA GIZA GIZA GIZA GIZA GIZA GIZA GIZA GIZA GIZA GIZA Com Chennel C	$MO 63146 \begin{array}{c} Job Code: & Giza \\ Job Name: & NASCC 2017 \\ Sheet No: & 8 of 18 \\ Created by: & Giza \\ Revision No: & 00 & Date: & 03/14/2017 \\ Subject: & S2W-C1 - B1000 \\ \end{array}$ Lehcon = $\begin{pmatrix} 1.25 \text{ in} \\ 1.75 \text{ in} \end{pmatrix}$
Lehmin = Lehmin2 min(Lehcon) = Leh1 Lehmax = min(6in,12 ·t1) Lehmax = 4.5 in Edge Distance ≥ Min. Edge Distance & Edge Distance	Lehmin = $\begin{pmatrix} 1.125 \text{ in} \\ 1 \text{ in} \end{pmatrix}$ stance ≤ Max. Edge Distance, OK
C. SHEAR PLATE CHECK	
1. Check for Maximum Thickness	
(AISC 14th Ed. Manual, Part 10, page 10-10	4)
Exceptions for $nv = 1$ and $nv = 2$,	
Shear Plate, t $\leq \frac{db}{2} + \frac{1}{16}$	Beam Web, tw $\leq \frac{db}{2} + \frac{1}{16}$
Leh≥ 2.db	Leh ≥ 2·db
Check maximum thickness of plate	
Coefficient for Eccentrically Loaded Bolts	,
(AISC 14th Ed. Manual Part 7, page 7-19)	
C' = 11.256 in	
Area of Bolts,	
$Ab = \frac{\pi \cdot db}{4}^2$	$Ab = 0.442 \text{ in}^2$
Length of Plate,	
$L = (nr-1) \cdot s+2 \cdot Lev$	L = 11.5 in
$tmax = \frac{6 \cdot \left(\frac{Fnv}{0.9} \cdot Ab \cdot C'\right)}{Fy \cdot L^2}$	
tmax = 0.376 in	t = 0.375 in
Plate thickness < Maximum Thickness Permitted	1, ок
Governing Shear Plate Thickness,	
Case = Maximum thickness need be checked	ed
t ≤ tmax	
tg = t	tg = 0.375 in
Description:Detailed Report	Created by: 📐 Giza 17

A		Job Code:	Giza	
	Giza Steel	Job Name:	NASCC 201	17
	1801 Park 270 Drive Suite 220 St. Louis, MO 63146	Sheet No:	9 of 18	
	Email: info@gizasteel.com	Created by:	Giza	
GIZA	www.gizasteel.com	Revision No:	00	Date: 03/14/2017
		Subject:	S2W-C1 -	B1000

2. Check for Stiffener Plate Requirement

(AISC 14th Ed. Manual Part 10, pages 10-105 to 10-106)

("On the Need for Stiffeners for the Effect of Lap Eccentricity on Extended Single-Plate Connections", William A. Thornton and Patrick J. Fortney)

Distance of First Bolt Line from the Face of Support,

 $ab1 = \frac{0.5(bf - tw) + gap}{\cos(\Theta sk)} + Leh \qquad ab1 = 9.28 in$

Lateral Displacement Capacity, (10-6)

 $Rreq = \Lambda b1500 \cdot \pi \cdot \frac{L \cdot tg^3}{ab1^2} \cdot ksi$

Rreq = 19.871 in

V = 10 kips

Lateral Displacement Capacity > Applied Force, UCV = 0.503, OK

Check for Requirement of Stiffener Plates,

 $\eta = \frac{\text{Rreq}}{V} \qquad \eta = 1.987$

Stiffener Plate is not required. OK

3. Bolt Capacity

(AISC 14th Ed. Specifications, Chapter J,	Section J3.10, pages 16.1-127 to 16.1-
Bolt Capacity due to Shear Load	Abrg
Bearing Area,	
Abrg = db·tg	Abrg = 0.281 in ²
Bolt Centerline Distance from Face of	Support,
$ab = \frac{0.5 \cdot (bf - tw) + gap + Leh + 0}{\cos(\theta sk)}$.5(nv - 1) ·sv
ab = 9.28 in	
Eccentricity Distance of End Reaction	from Bolt Line,
ebv = ab	ebv = 9.28 in
Load Inclination from Vertical,	
$\theta = 0 \text{ deg}$	
Eccentric Load Coefficient,	
(AISC 14th Ed. Manual Part 7, Instanta	neous Center of Rotation Method, pages 7-
C = 1.172	

•		Job Code:	Giza
	Giza Steel	Job Name:	NASCC 2017
	1801 Park 270 Drive Suite 220 St. Louis, MO 63146	Sheet No:	10 of 18
	Email: info@gizasteel.com	Created by:	Giza
GIZA	www.gizasteer.com	Revision No:	00 Date: 03/14/2017
		Subject:	<u>S2W-C1 - B1000</u>

```
Allowable Bearing Strength Using Edge Distance, (J3-6a, J3-6c)
        hdh < hdls
       Fbe = Abrg \cdot Fu \cdot
\begin{bmatrix}
1.2 \cdot (Lev - 0.5 \cdot hdv) \cdot tg \\
1.2 \cdot (Leh - 0.5 \cdot hdh) \cdot tg \\
2.4 \cdot Abrg
\end{bmatrix}
        ebv > Oin
                                                         Fbe = 9.38 kips
        Fbe = min (Fbe)
    Allowable Bearing Strength Using Bolt Spacing (J3-6a, J3-6c)
        hdh < hdls
        Fbs = \Lambdabrg \cdotFu \cdotmin[1.2 \cdot (s - hdv) \cdottg , 2.4 \cdotAbrg]
        Fbs = 19.575 kips
    Number of Area in Consideration,
        n1 = n
    Bolt Bearing Capacity,
        ebv > 0in
        Rbrg = C \cdot min(n1 \cdot Fbe, n1\cdotFbs, n \cdot Arv)
        Rbrg = 10.99
                                                        V = 10 kips
    Bolt Capacity > Applied Force, UCV = 0.91, OK
4. Shear Yielding Capacity
(AISC 14th Ed. Specifications, Chapter J, Section J4.2, page 16.1-129)
a. Shear Yielding Capacity due to Shear Load
    Length,
       L = (nr - 1) \cdot s + 2 \cdot Lev
                                                         L = 11.5 in
   Erection Stability,
    (AISC 14th Ed. Manual Part 10, page 10-106)
    Length of Connector > One-half of T-Dimension, OK
    Number of Areas in Consideration,
       n1 = n
    Shear Yielding Capacity, (J4-3)
        Rvy = \Lambda vy \cdot n1 \cdot 0.6 \cdot Fy \cdot L \cdot tg
```

Shear Yielding Capacity > Applied Force, UCV = 0.161, OK

V = 10 kips

5. Rupture Capacity

Rvy = 62.1 kips

A		Job Code:	Giza	
	Giza Steel	Job Name:	NASCC 20	17
1801 Park 270 Drive Suite 220 \$	1801 Park 270 Drive Suite 220 St. Louis, MO 63146	Sheet No:	11 of 18	
	Email: info@gizasteel.com	Created by:	Giza	
GIZA	www.gizasteel.com	Revision No:	00	Date: 03/14/2017
		Subject:	S2W-C1 -	B1000

```
(AISC 14th Ed. Specifications Chapter J, Section J4.2, page 16.1-129)
a. Shear Rupture Capacity due to Shear Load
   Net Shear Area,
                                                   Anv = 3 in^2
       Anv = (L-nr \cdot hdv) \cdot tg
   Number of Areas in Consideration,
       n1 = n
   Shear Rupture Capacity, (J4-4)
       Rvr = Avr \cdot n1 \cdot 0.6 \cdot Fu \cdot Anv
       Rvr = 52.2 kips
                                                   V = 10 kips
   Shear Rupture Capacity > Applied Force, UCV = 0.192, OK
6. Block Shear Capacity
(AISC 14th Ed. Specifications, Chapter J, Section J4.3, page 16.1-129)
a. Block Shear Capacity due to Shear Load
   Reduction Factor,
       nv = 1
       Ubs = 1.0
                                                   (tension stress is uniform)
   Gross Shear Area,
                                                                                      ₽,
                                                  Aqv = 3.844 in^{2}
       Agv = [(nr - 1 \cdot s + Lev] \cdot tg]
                                                                                             (nr-1)@sv
   Net Tension Area,
                                                                                      Jو
       Ant = [Leh + (nv - 1) \cdot sv - (nv - 0.5) \cdot hdh] \cdot tg
       Ant = 0.27 \text{ in}^2
                                                                          Leh
                                                                                 (nv-1)@sv
   Net Shear Area,
                                           Anv = 2.695 in^2
       Anv = Agv - [(nr - 0.5) \cdot hdv] \cdot tg
   Number of Areas in Consideration,
       n1 = n
   Block Shear Capacity, (J4-5)
       Rbs = Abs ·n1 ·min(0.6 ·Fu ·Anv + Ubs ·Fu ·Ant, 0.6 ·Fy ·Agv + Ubs ·Fu ·Ant)
       Rbs = 49.329 kips
                                                   V = 10 kips
   Block Shear Capacity > Applied Force, UCV = 0.203, OK
7. Local Buckling Capacity
(AISC 14th Ed. Manual, Part 9, page 9-9)
   Distance of Bolt Line to Support,
       Stiffeners = Required
       ab = gap + Leh
                                                   ab = 9.5 in
```

•		Job Code:	Giza
	Giza Steel	Job Name:	NASCC 2017
	Email: info@gizasteel.com	Sheet No: Created by:	12 of 18 Giza
GIZA	www.gizasteel.com	Revision No:	00 Date: 03/14/2017
		Subject:	S2W-C1 - B1000

Coefficient,

$$\lambda = \frac{L \cdot Fy^{0.5}}{10 \cdot tg \cdot \left[475 + 280 \left(\frac{L}{ab} \right)^2 \right]^{0.5}} \cdot \frac{1}{k \text{si}^{0.5}} \quad \lambda = 0.618$$

$$\lambda > 1.41$$

$$Q = \frac{1.30}{\lambda^2}$$

$$Q = 1$$

Allowable Flexural Local Buckling Stress or Yielding Stress,

$$Fcr = Q \cdot Fy$$
 $Fcr = 36 \text{ ksi}$

Gross Plastic Section Modulus,

$$Zx = \left(\frac{\text{tg} \cdot \text{L}^2}{4}\right) \qquad \qquad Zx = 12.398 \text{ in}^3$$

Eccentricity,

e = ab

Local Buckling Capacity,

$$Rbc = \Lambda b \cdot \frac{Fcr \cdot Zx}{e}$$

Rbc = 28.134 kips V = 10 kips

Local Buckling Capacity will not control, OK

8. Flexural Rupture Capacity

(AISC 14th Ed. Manual Part 15, page 15-4)

(AISC 14th Ed. Steel Construction Manual Design Examples, page IIA-104)

Net Plastic Section Modulus,

 $mod(nr,2) \leq 0$

$$Znet = \left[\frac{tg \cdot L^2}{4} - \frac{tg \cdot hdv \cdot nr^2 \cdot s}{4} \right]$$

Znet = 8.461 in^{3}

Flexural Rupture Capacity,

Rfr = е

Rfr = 25.828 kips

V = 10 kips

e = 9.5 in

Flexural Rupture Capacity > Applied Force, UCV = 0.387, OK

9. Flexural Yielding Capacity with Von-Mises Shear Reduction

(AISC 14th Ed. Manual Part 10, page 10-103)

A		Job Code:	Giza
	Giza Steel	Job Name:	NASCC 2017
	Email: info@gizasteel.com	Sheet No: Created by:	13 of 18 Giza
GIZA	www.gizasteel.com	Revision No:	00 Date: 03/14/2017
		Subject:	S2W-C1 - B1000

(Muir, Larry and Hewitt, Christopher,"Design of Unstiffened Extended Single-Plate Shear Connections",Engineering Journal, 2nd Quarter 2009, page 69

Flexural Yielding Capacity,

Rfc =
$$\frac{\text{Ab} \cdot \text{Fy} \cdot \text{L} \cdot \text{tg}}{\left[2.25 + 16 \cdot \left(\frac{\text{e}}{\text{L}}\right)^{2}\right]^{0.5}}$$

Rfc = 25.618 kips

V = 10 kips

UCV = 0.152

Flexural Yielding Capacity > Applied Force, UCV = 0.39, OK

10. Interaction of Shear Yielding, Shear Buckling, and Flexural Yielding Capacities

(AISC 14th Ed. Manual Part 10, pages 10-104 to 10-105)

From AISC Manual Equation 10-5,

$\left(\frac{Vr}{Vc}\right)^2 + \left(\frac{Mr}{Mc}\right)^2 \le 1.0$	
Vr = V	Vr = 10 kips
Mr = Vr·e	Mr = 95 kips·in
Shear Yielding Capacity,	
Vc = Avy · 0.6 · Fy · L · tg	Vc = 62.1 kips
Flexural Yielding Capacity,	
Mc = Ab ·Fy ·Zx	Mc = 267.272 kips in

Interaction, (10-5)

$$UCV = \left(\frac{Vr}{Vc}\right)^2 + \left(\frac{Mr}{Mc}\right)^2$$

Interaction < 1.0, UCV = 0.152, OK

D. SHEAR PLATE TO COLUMN WEB CHECK

1. Welds Check

•	Job Code: <u>Giza</u>
Giza Steel	Job Name: <u>NASCC 2017</u>
Email: info@gizasteel.com	Created by: Giza
GIZA www.gizasteel.com	Revision No: 00 Date: 03/14/201
	Subject: <u>S2W-C1 - B1000</u>

III. DETAILS

A. SKETCH

Note: Figure above does not represent actual design. Refer to connection schedule

SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB

•		Job Code:	Giza
	Giza Steel	Job Name:	NASCC 2017
	1801 Park 270 Drive Suite 220 St. Louis, MO 63146	Sheet No:	15 of 18
	Email: info@gizasteel.com	Created by:	Giza
GIZA	www.gizasteel.com	Revision No:	00 Date: 03/14/2017
		Subject:	S2W-C1 - B1000

B. CONNECTION SCHEDULE

Column					
Mark	Size	Grade			
C1000	W14X90	A992			

Beam					Ŵe	èb	
Mark	Size	Grade	gap	θsl	θsk	D	Leh
в1000	W16X26	A992	1/2"	0°	0°	3"	1 3/4"

Cope Dimension						
dcT	сT	dcB	сВ	Cut Flush Case		
0 "	0"	0"	0"	NR		

Bolts at Beam Web						
db Bolt Type Remarks nr s					nv	sv
3/4"	A325-N	Short-Slot on Shear Plate ONLY	4	3"	1	0"

A		Job Code:	Giza	
180	Giza Steel 1801 Park 270 Drive Suite 220 St. Louis, MO 63146		NASCC 2017	
	Email: info@gizasteel.com	Created by:	Giza	Date: 03/14/2017
GIZA		Subject:	S2W-C1 -	- B1000

Shear Plate			
t	Grade	Lev	Leh
3/8"	A36	1 1/4"	1 1/4"

Remarks as per AISC Equation 10-5			
Intera	ction < 1.0, UCV = 0.152, OK		

Governing Limit State of SC Connection				
v	Connection Capacity	UCV	Governing Check	
10 kips	10.990 kips	0.910	Bolt Capacity at Shear Plate	

Remarks on Connection / Connecting Elements				
For Bolts	For Connector Thickness	For Connector Length	For Bolt Spacing	For Edge Distance
OK	OK	OK	OK	OK

A		Job Code:	Giza	
	Giza Steel 1801 Park 270 Drive Suite 220 St. Louis, MO 63146 Email: info@gizasteel.com	Job Name:	NASCC 2	017
		Sheet No:	17 of 18	
		Created by:	Giza	
GIZA		Revision No:	00 82W-01	
		Subject.	52W-CI	- 81000

Remarks on Connection / Connecting Elements		
For Weld on Shear Plate to Column Web		
OK		

Remarks on Connection / Connecting Elements			
For Weld on Shear Plate to Column Web	For Weld on Shear Plate to Stiffener	For Weld on Stiffener Plate to Column	
OK	NA	NA	

Remarks on Beam Web / Column Web			
For Beam Web	For Column Web		
OK	OK		

		Job Code:	Giza
	Giza Steel	Job Name:	NASCC 2017
	1801 Park 270 Drive Suite 220 St. Louis, MO 63146	Sheet No:	18 of 18
	Email: info@gizasteel.com	Created by:	Giza
GIZA	www.gizasteer.com	Revision No:	00 Date: 03/14/2017
		Subject:	<u>S2W-C1 - B1000</u>

IV. REFERENCES

Steel Construction Manual ,(14th Ed.), ASD, American Institute of Steel Construction, Inc. ,2011